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Abstract
Understanding the diffusion of warning messages is essential to adequately respond 
to emergency events and situations. This is especially true in urgent scenarios, that 
is situations where external events are happening at the same rate or faster than the 
diffusion process itself. In this paper, an information diffusion model (Bass model) 
is proposed to study the spread of warning messages during emergencies involv-
ing urgent diffusion dynamics, for example a CBRNe event. In the present study, 
the Bass model is applied to two hazardous materials transportation accidents re-
ported in the literature: the Pittsburgh phosphorus oxychloride release and the pre-
cautionary evacuation occurred in Confluence due to toxic chemicals released after 
a train derailment. Warning data collected from the two accidents and reported in 
published literature studies were used in this work and fitted with the Bass model. 
The diffusion of emergency warning messages is modelled as a two-component sys-
tem, where the spread of information is characterized by (a) a “broadcast process” 
that disseminates the emergency warning vertically (in the sense that many people 
are alerted simultaneously) and (b) a horizontal “contagion process” whereby people 
first hear of the event and then sequentially tell others (social media, word-of-mouth 
and peer-to-peer communication). The Bass model provided an excellent fit of the 
warning diffusion times related to both accidents suggesting that the very first phase 
of the warning process is sustained by a “broadcast” information diffusion process. 
However, after less than 1 hr from the beginning of the warning process the efficacy 
of its diffusion is dominated by the “contagion” component, that is the effectiveness 
of a robust social network between individuals. In conclusion, the Bass model proved 
to be a handy tool to assess epidemics spreading of information from the people who 
adopted the information. Our results suggest that the general Bass model applied to 
diffusion of emergency warning has the potential to provide key information in the 
management of emergencies. This approach can be applied right away by profes-
sional communicators, advisors and decision-makers in case of a CBRNe event.
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1  | INTRODUC TION

Chemical, biological, radiological, nuclear and explosive (CBRNe) 
terrorism is a form of terrorism involving the use of weapons of 
mass destruction. According to the University of Maryland's Global 
Terrorism Database (GTD & Global Terrorism Database, 2020), from 
1970 to 2014 CBRNe weapons have been extensively used across 
the world for a total of 143 attacks, of which 35 biological, 95 
chemical and 13 radiological. Therefore, there is growing concern 
among homeland security professionals, that terrorist groups will 
release CBRNe materials in an attack against civilian populations. 
In fact, following 11 September 2001 and the anthrax attacks in 
America of the following month, the international community came 
to believe that the reality of a CBRNe event has to be accepted. 
Furthermore, recent developments in the Middle East have revital-
ized awareness of the threat of attacks involving CBRNe weapons. 
Therefore, it is generally accepted that there is a realistic possibil-
ity of some form of unconventional terrorist attack in the western 
world and that this could involve CBRNe material (D'Arienzo, Pinto, 
Sandri, & Zagarella, 2017). The authorities need to consider how the 
community is likely to react, and collaborative efforts are needed 
to identify what steps would be required to mitigate the effects 
of such an event. Information management is a key element in an 
emergency scenario, such as a CBRNe attack. In a crisis or disas-
ter situation, information management ensures the accuracy of the 
information that managers rely on to make critical decisions. For 
communicators, it is vital to know that every emergency, disaster 
or crisis evolves in phases and that the communication must evolve 
in tandem. During a crisis, unpredictable and unusual events, or 
unstable and dangerous situations may bring about abrupt change. 
Understanding the pattern of a crisis can help communicators an-
ticipate the information needs of the public, stakeholders and the 
media. In particular, emergency warning strategies to alert the pub-
lic to potential danger in areas surrounding hazardous facilities are 
of critical importance.

The diffusion of emergency warnings resembles diffusion of 
other types of information or communications, except that it occurs 
in a shorter time period, and the consequences of not receiving the 
massage are usually more severe. The basic mathematical function 
is a logistic function. The cumulative proportion of people receiv-
ing the warning forms an S-curve, which is determined by the ex-
ponential form of the initial alerting process and the logistic form of 
the subsequent contagion of the warning and message through the 
population.

According to recent research (Martin-Shields, 2019; Rogers & 
Sorensen, 1988; Vihalemm, Kiisel, & Harro-Loit, 2011; Warren, 2015), 
the diffusion of warning messages is characterized by two main com-
ponents: vertical and horizontal sources of information. Broadcast 
media (such as radio and television), together with governments, pol-
itics and news reports, are vertical systems since the information is 
single-source, broadcasts down and diffuses out. As a consequence, 
the emergency warning is disseminated in a centralized way, in the 

sense that many people are alerted simultaneously. On the other 
hand, horizontal media include cellular telephones, crowd sourcing 
platforms and social media. This type of media provides a tool to 
share and generate information using a peer-to-peer network sys-
tem. This process if often referred to as contagion component, since 
people first hear of the event and then sequentially tell others.

With this in mind, this paper seeks to address the following ques-
tions: do people generally use horizontal or vertical media to gather 
information and to take action during an emergency? What is the 
time evolution of the two components over time? In the present 
study, an information diffusion model (namely the Bass model) is in-
troduced to assess the spread of warning messages during emergen-
cies involving urgent diffusion dynamics. The mathematical model 
for the diffusion of emergency warning messages was then applied 
to two hazardous materials transportation accidents in the United 
States: (a) the Pittsburgh phosphorus oxychloride release and (b) the 
precautionary evacuation occurred in Confluence following a train 
derailment.

2  | RELE VANT LITER ATURE

Communication is an essential component of disaster manage-
ment, and a growing body of literature has examined the impact of 
a prompt dissemination of warning messages during emergencies. 
Unavoidably, the research summarized in this section is only a subset 
of a large body of work done on emergency alerts and warnings.

Channels of delivery of warnings and alerts during emergen-
cies can be viewed by the public as official (Cutter, 1987; Perry 
& Green, 1982; Saarinen & Sell, 1985), credible (Perry, 1987; 
Stallings, 1984), familiar (Lindell & Perry, 1987; Perry & Green, 1982; 
Perry & Lindell, 1986) or may involve human interaction 
(Cutter, 1987; Gray, 1981; Perry, Lindell, & Greene, 1981). Each of 
these channels is effective in some settings, but not all. As a general 
rule, how a recipient receives a warning message may influence an 
individual's perception on the risk and threat and therefore affects 
the time required to take a protective action. As an example, social 
media, phone applications and online messaging among friends and 
family are likely to play a key role during an emergency. According 
to a recent study by Bagrow and colleagues (Bagrow, Wang, & 
Barabási, 2011), word spreads fast and far during an emergency. In 
their study, the authors found that large-scale emergencies, such as 
bombings and plane crashes, trigger a sharp spike in the number of 
phone calls and text messages (SMS) sent by eyewitnesses in the 
vicinity of the disaster. The effectiveness of SMS and other text 
messages as a tool for disaster warning is confirmed by other studies 
(Bean et al., 2016; Egnoto, Svetieva, Vishwanath, & Ortega, 2013; 
Eriksson, 2010; Nugraheni & Vries, 2015).

Along the same lines, many studies have been published on the 
use of social media as complementary channels for emergency alerts 
(van Dijl, Zebel, & Gutteling, 2018; Eriksson & Olsson, 2016; Helsloot 
& Groenendaal, 2013). As a matter of fact, social media usage is one 
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of the most popular online activities. At present, about 3 billion 
people use social media worldwide, meaning that social media are 
used by one-in-three people in the world (The rise of social media, 
2020). For this reason, social media platforms are widely used during 
disaster events by emergency responders, people in the affected 
community and global onlookers (Hughes & Palen, 2009) who con-
verge there to seek and share information (Brynielsson et al., 2017; 
Cheng, 2016; van Dijl et al., 2018; Kim, Bae, & Hastak, 2018; 
Wukich, 2016). However, there are also many challenges related to 
the use of social media in the crisis context, for example the spread 
of misinformation on these platforms (Department of Homeland 
Security, 2018; Truong, Caragea, Squicciarini, & Tapia, 2014; Wang 
& Zhuang, 2018).

Against this backdrop, in recent years there has been consid-
erable interest in modelling the dynamics of information spread-
ing during disasters and emergencies (Brynielsson et al., 2017; 
D’Agostino, D’Antonio, De Nicola, & Tucci, 2015; Goyal, Bonchi, & 
Lakshmanan, 2010; Pastor-Satorras, Castellano, Van Mieghem, & 
Vespignani, 2015). In the present study, the Bass model is introduced 
to evaluate the spread of warning messages during emergencies. 
The original Bass model, popular in the field of marketing, was orig-
inally developed for understanding the diffusion of innovations and 
consumer durables (Bass, 1969). According to this model, the diffu-
sion process can be described as the sum of a logistic growth and an 
exponential growth (see section 3.2). The diffusion of emergency 
warnings and alert resembles diffusion of other types of informa-
tion or communication. Similarly to the Bass model, the cumulative 
number of people receiving warning forms an S-curve determined 
by the exponential trend of the initial alerting process and the lo-
gistic form of the subsequent phase (Rogers & Sorensen, 1988). For 
this reason, the Bass model can be more generally applied to the 
diffusion of information. In 2009, Hsiao (Hsiao, Jaw, & Huan, 2009) 
applied the Bass model to assess how information diffusion influ-
ences tourists’ consumption patterns. Interestingly, in another work, 
Rand and colleagues (Rand, Herrmann, Schein, & Vodopivec, 2015) 
studied the diffusion of information comparing Twitter data with the 
Bass model and with the independent cascade model (Goldenberg, 
Libai, & Muller, 2001; Kempe, Kleinberg, & Tardos, 2015). The major 
difference between the present study and Rand et al. (2015) is that 
Rand implemented an agent-based Bass model (Rand & Rust, 2011) 
meaning that each individual (agent) has one of two states at each 
time step: (a) unaware or (b) aware. At the beginning of the simula-
tion, all agents are unaware but over time each agent's state can vary 
probabilistically. Once an agent becomes aware, it remains aware for 
the rest of the simulation. In this study, the authors concluded that 
the models fit qualitatively similarly, but the diffusion patterns are 
quite different from each other.

The general approach presented in our study is similar to Rand 
et al. (2015) with the exception that our model is not agent-based. 
Another major difference is that in this study, we compared the 
Bass model with data from post-event surveys, while Rand (Rand 
et al., 2015) compared the above-mentioned models to data col-
lected from social media (Twitter).

3  | MATERIAL AND METHODS

3.1 | A model for warning time diffusion

Previous research has found that risk area residents receive warn-
ings from the official warning network of authorities and the news 
media (i.e. vertical systems) and also from an informal warning net-
work of peers (i.e. horizontal system). In some instances, the informal 
warning network can account for a significant proportion of all first 
warnings (Lindell & Perry, 1992). This finding suggests that warn-
ings can be modelled as a process comprising two components: (1) 
the official (broadcast) component and (2) the informal (contagion) 
component (Rogers & Sorensen, 1988, 1989). The general mathe-
matical specification of the diffusion curve is reported in Rogers and 
Sorensen (1988) and is recalled here:

where k denotes the proportion of people getting informed during a 
notification period, a1 (broadcast component) denotes the alert noti-
fication parameter revealing the alert notice efficiency, and a2 (conta-
gion component) denotes the communication and diffusion parameter 
showing the efficiency of alert notice. N denotes the proportion of 
people who should receive the notice, and n denotes the proportion 
of people who have already received the notice at different period of 
time.

Unlike the official warning network, which is organized and 
planned in advance, the informal warning network emerges during 
the incident from proximity (neighbours), kin (relatives) and other 
social ties (friends and coworkers). It is thus possible for planners to 
identify the components of the formal warning network, estimate 
the cumulative distribution of warning reception times and modify 
the network design if the resulting warning reception distribution 
is inadequate.

3.2 | The two-component Bass model

The Bass diffusion model was originally developed by Frank Bass 
[39] and describes the process of how new products get adopted 
as an interaction between users and potential users. On a wider 
level, the Bass model can be applied more generally to the diffusion 
of information [42]. The original model is based on the assumption 
that people get their information from two sources: advertising and 
word-of-mouth. In his 1969 article (Bass, 1969), Bass suggested that 
the following differential equation can be used to represent the dif-
fusion process: 
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where in the original model, N(t) is the cumulative number of adopters 
at time t, m is the total number of potential buyers of the new prod-
uct, p is the advertising or innovation coefficient, and q is the imita-
tion or word-of-mouth coefficient. It is worth noting the resemblance 
between Equation (1) and Equation (2), mathematically equivalent. 
Equation (2) shows that the Bass model can be regarded as a combi-
nation of the exponential model (for early adopters) and the logistic 
model (for imitators).

The coefficient of innovation p is so called because its contribu-
tion to new adoptions does not depend on the number of prior adop-
tions. Since these adoptions were due to some influence outside the 
social system, the parameter is also called the parameter of external 
influence. The coefficient of imitation q received its moniker because 
its effect is proportional to cumulative adoptions N(t), implying that 
the number of adoptions at time t is proportional to the number 
of prior adopters. In other words, the more people talking about a 
product, the more other people in the social system will adopt. This 
parameter is also referred to as the parameter of internal influence.

By analogy with the original formulation of the Bass model, in 
this work the assumption is made that people get their information 
from two sources: broadcast (vertical media) and contagion (hori-
zontal media). In essence, the Bass model may be used to describe 
the fractional change in a population's awareness of a piece of infor-
mation by Equation (2). In our new formulation, N(t) is the cumulative 
number of aware people at time t, m is the total number of potential 
people that can be reached by the information, p is the broadcast co-
efficient, and q is the contagion coefficient. Assuming F (t)=N (t) ∕m

, where F(t) is the aware fraction of the population as a function of 
time t, the Bass model formulated in Equation (2) can be restated as:

or:

where p is the broadcast coefficient, and q is the contagion coefficient. 
Traditionally, q is an order of magnitude greater than p, representing 
the fact that social communication has a greater effect on adoption 
decisions than broadcast effects. The equation can be interpreted as 
describing a hazard rate, that is, the conditional probability that a per-
son will become aware of information at time t given that they are not 
yet aware. In this case, the hazard rate F(t′)∕

[

1−F (t)
]

 is the sum of a 
constant broadcast effect p and a contagion (or peer-to-peer) effect 
qF (t) that scales linearly in the fraction of population aware.

If N
(

t= t0=0
)

=0, simple integration of Equation (2) gives the 
following distribution function to represent the time-dependent as-
pect of the diffusion process. That is,

or, in terms of probability distribution:

Equation (5) yields the S-shaped diffusion curve captured by the 
Bass model. In fact, for this curve, the point of inflection (which is 
the maximum penetration rate, 

[
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q and t are the following:

• F (t)′, the (non-cumulative) portion of m that is aware at time t. This 
is given by:

• F (t), the portion of m aware by time t. This is given by Equation (6).
• The number N(t) of aware individuals, in turn, can be split into two 

contributions: (a) individuals that become aware due to outside 
effects (i.e. information from outside the network) with probabil-
ity p. In the original Bass model, these are called “innovators,” Ninno 
and are given by (see also Equation 2):

(b) individuals that with probability q become aware due to the 
social network. In the original formulation, they are called “imita-
tors,” Nimit and are given by (see also Equation 2):
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many different patterns of diffusion of information quite well.

In a real context (e.g. CBRNe emergency and consequent diffu-
sion of information), the Bass model can be viewed as a discrete-time 
model in which each individual has one of two states at each time 
step t: (a) unaware or (b) aware. At the beginning of the process, all 
people are considered to be unaware. Over time, unaware people 
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are likely to become aware. Their state changes with a probability 
that reflects broadcast and contagion effects.

To conclude, the probability that an individual becomes aware may 
depend on two circumstances: (a) Broadcast. With probability p an un-
aware individual becomes aware due to outside effects (i.e. informa-
tion from outside the network) where p is the coefficient of innovation. 
(b) Contagion. With probability q, an unaware person becomes aware 
due to social networks and peer-to-peer communication.

3.3 | Modelling warning and response in two 
hazardous materials transportation accidents in the 
United States: Pittsburgh and Confluence case studies

In the present paper, the Bass model described in section 3.2 was 
applied to two hazardous materials transportation accidents in the 
United States: i) the Pittsburgh phosphorus oxychloride release and 
the ii) precautionary evacuation occurred in Confluence. The Bass 
model was fitted to data derived from post-event surveys reporting 
the effectiveness of the warning system in terms of the timing of 
warning receipt by the population. A detailed description of the two 
accidents along with the original survey data is reported in (Rogers 
& Sorensen, 1989).

3.3.1 | Pittsburgh phosphorus oxychloride release

On Saturday, 11 April 1987 a westbound Conrail freight train de-
railed in Pittsburgh (Pennsylvania), prompting police to evacuate 
hundreds of homes and to ward off aircraft above the accident. Four 
tank cars containing hazardous materials were derailed, and sparks 
resulting from the accident ignited a fire. One overturned tanker car 
leaked between 100 and 400 litres of phosphorus oxychloride. The 
chemical is a toxic, colourless liquid that gives off a pungent odour 
and can cause skin burns. However, none of the hazardous materi-
als involved in the accident ignited. Because of the involvement of 
hazardous materials, Pittsburgh emergency personnel initiated an 
evacuation upon arrival at the scene about 20 min after the acci-
dent. Apparently recognizing signs of potential danger, some local 
residents in immediate adjacent areas had already begun to evacu-
ate. Up to 22,000 people were evacuated as the initial evacuation 
area was expanded to accommodate changing weather conditions.

3.3.2 | Confluence evacuation

On Wednesday, 6 May 1987 at 4:10 a.m., a freight train derailed 
in Pennsylvania and smashed into a railroad control tower, killing 
one man and spewing chemical fumes that forced 1,000 people to 
evacuate an entire town. During the accident, 21 of 27 empty tank 
cars carrying product residues, including propane, chlorine, caustic 
soda, carbon disulphide, methyl chloride, chloroform and isobutane 

jumped the tracks. Because tank cars carrying residue can haul up 
to 3% of the load, the exact amount of products remaining in the 
cars was unknown. As a consequence, 986 people were evacuated 
from their homes for over 12 hr. A 3-min non-stop siren blast was 
sounded, which primarily alerted the volunteer firemen as residents 
could not be aware of the siren blast's specific meaning, although it 
could serve as an alert to those who heard it.

3.3.3 | Confluence evacuation

Warning in both accidents primarily consisted of route alert-
ing (portable sirens and loudspeakers) and door-to-door warning. 
These warning methods account for the majority of the warnings 
received (59% and 89%, respectively) (Rogers & Sorensen, 1989). 
Furthermore, about 67% and 28% of respondents reported visible 
or audible signs of the disaster. Route alerting methods of warn-
ing took 60 to 90 min in Pittsburgh, while portable sirens averaged 
just over 30. On the other hand, in Confluence loudspeakers and 
door-to-door alerting took about an hour on average in Confluence 
(Rogers & Sorensen, 1989).

3.3.4 | Warning data collected from the 
two accidents

For both accidents specific surveys were conducted aimed at assess-
ing the timing of warning receipt with respect to the occurrence of 
the accidents (Rogers & Sorensen, 1989). Approximately 9 weeks 
after the accident, two surveys of residents in the Bloomfield sec-
tion of Pittsburgh were conducted, based on a mail-back question-
naires and telephone interviews. The response rates were 29.3% and 
51%, respectively. Regarding the Confluence precautionary evacua-
tion, telephone interviews were conducted from October 20 to 28 
(1987), approximately 22 weeks after the accident. Telephone inter-
views resulted in an 89.8% response rate. For both accidents, data 
regarding the cumulative proportion of population warned by time 
of receipt in terms of minutes into the event are reported in the re-
sults section. The original measurement difficulties were evidenced 
by the proportion of respondents that reported receiving warning 
prior to the occurrence of the accidents (Rogers & Sorensen, 1989). 
Most likely, this was due to the way people think about and recall 
time.

4  | RESULTS

The Bass model detailed in section 3.2 was fitted to data from ac-
cidents described in sections 3.3.1 and 3.3.2. In particular, the pres-
ence of an innovation (p) and imitation (q) component was estimated 
relying on warning data collection from the two accidents (Rogers 
& Sorensen, 1989). Non-linear regression of data related to warning 
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times during the two accidents was performed using a in-house 
Python-based code (https://www.python.org/). It is worth noticing 
that the original survey data regarding the timing of warning receipt 
(Rogers & Sorensen, 1989) begin at t = −60 min from the accident, 
that is representing people that received warning prior to the occur-
rence of the accidents. As stated by the authors, this inconsistency 
is related to difficulties by respondents in recalling the exact time 
of warning receipt. Without any loss of generality, in the present 
study data are rescaled by 60 min, indicating the occurrence of the 
accidents at t = 0 min.

Consistently with the Bass model and with the two-component 
diffusion model described by Equation (1), warning receipt data for 
both accidents are characterized by an S-shaped curve (Figures 1a 
and 3a), thereby suggesting the presence of a p (innovation) and 
q (imitation) component. Results related to the Pittsburgh phos-
phorus oxychloride release accident are shown in Figures 1 and 
2. Figure 1a shows the cumulative number of warned individuals 
after the occurrence of the accidents. Literature data taken from 
Rogers and Sorensen (1989) are reported (dotted line + circles) and 
fitted with the Bass model. From non-linear regression, it resulted 

F I G U R E  1   Application of the Bass 
model to the Pittsburgh phosphorus 
oxychloride release accident. (a) 
Literature data taken from Rogers and 
Sorensen (1989) are reported (dotted 
line + circles) and fitted with the Bass 
model. From non-linear regression, it 
resulted q = 0.038 and p = .0011. The red 
area represents 95% confidence interval 
in the fit. (b) The differential number of 
warned individual is represented, divided 
into three categories: Black line = total 
number of warned individuals. Blue 
line = Number of individuals warned by 
the broadcast process (related to q) and 
Red line = Number of individuals warned 
by the peer-to-peer process (related 
to p) [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://www.python.org/
www.wileyonlinelibrary.com


234  |     D’ARIENZO Et Al.

q = 0.038 and p = .0011. Figure 1b shows the differential number 
of warned individual divided into three categories: total number of 
warned individuals, number of individuals warned by the broad-
cast process (related to q) and number of individuals warned by 
peer-to-peer process (related to p). The red area represents 95% 
confidence interval in the fit. Finally, Figure 2a,b shows the cu-
mulative number of warned individual associated with p and q 
components.

Results related to the Confluence accident are presented in a sim-
ilar way in Figures 3 and 4. Figure 3 shows the cumulative number 
of warned individuals after the accident. Literature data taken from 
Rogers and Sorensen (1989) are reported (dotted line + circles) and fit-
ted with the Bass model. Non-linear regression analysis provided the 
following values for the imitation and innovation parameters, respec-
tively: q = 0.02858 and p = .0005. Figure 4a,b illustrates the cumula-
tive number of warned individual associated with p and q components.

F I G U R E  2   Application of the Bass 
model to the Pittsburgh phosphorus 
oxychloride release accident. (a) 
The cumulative number of warned 
individual is represented, divided into 
three categories: Black line = total 
number of warned individuals. Blue 
line = Number of individuals warned by 
the broadcast process (related to q) and 
Red line = Number of individuals warned 
by the peer-to-peer process (related to p). 
(b) Detail in the time slot 0–50 min [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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5  | DISCUSSIONS

Understanding the effectiveness of warning messages during an 
emergency scenario is of critical importance. In fact, an effective 
and timely warning system has the potential to bring about the 
rapid implementation of protective measures thereby minimizing 
casualties and reducing damages. In the Internet world, people 
communicate with each other and form various virtual communi-
ties based on social networks, which lead to a complex and fast 
information spread pattern of emergency events (Cheng, 2016; 

Wukich, 2016). A large and growing body of literature has inves-
tigated the epidemic diffusion of information in complex net-
works and a number of models have been proposed (Brynielsson 
et al., 2017; D’Agostino et al., 2015; Goyal et al., 2010; Pastor-
Satorras et al., 2015).

There has been considerable previous work understanding and 
modelling the diffusion of information during emergencies. Recent 
research suggested that the diffusion of warning messages can be 
modelled as a combination of a formal (vertical information) and 
an informal (horizontal) component (Rogers & Sorensen, 1991; 
Lindell & Perry, 1987; Lindell, Prater, & Peacock, 2007; Rogers & 

F I G U R E  3   Application of the Bass 
model to the Confluence precautionary 
evacuation. (a) Literature data 
taken from Rogers and Sorensen (1989) 
are reported (dotted line + circles) and 
fitted with the Bass model. From non-
linear regression, it resulted q = 0.02858 
and p = .0005. The red area represents 
95% confidence interval in the fit. (b) 
The differential number of warned 
individual is represented, divided into 
three categories: Black line = total 
number of warned individuals. Blue 
line = Number of individuals warned by 
the broadcast process (related to q) and 
Red line = Number of individuals warned 
by the peer-to-peer process (related 
to p) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Sorensen, 1989). Vertical media are represented by radio, televi-
sion, governments, news and reporters, while horizontal warning 
networks are represented by neighbours, kin (relatives) and other 
social ties (friends and coworkers). However, the development of a 
comprehensive model is challenging since the two components may 
present significant variations related to the specific emergency, to 
the social structure and to the cultural environments in which com-
munication processes are immersed. Another difficulty is that the 
contagion warning network's elements are numerous and can only 
be modelled as an aggregate and complex rather than identified in-
dividually (Lindell et al., 2007)).

Social networks play a major role in emergency situations and 
shape the response to emergency warnings. An extensive review 
of the use of social media in emergency situations is provided by 
Simon (Simon, Goldberg, & Adini, 2015) and Reuters (Reuter & 
Kaufhold, 2017). Recent research reported that ignoring the con-
tribution of the informal warning network can cause a systematic 
downward bias in the warning reception time distribution, thus over-
estimating the amount of time needed to warn a risk area population 
(Lindell et al., 2007). However, the impact of the social network on 
the response to an emergency situation may even depend on social 
and political factors. For instance, in a recent paper Martin-Shields 

F I G U R E  4   Application of the Bass 
model to the Confluence precautionary 
evacuation. (a) The cumulative number of 
warned individual is represented, divided 
into three categories: Black line = total 
number of warned individuals. Blue 
line = Number of individuals warned 
by the broadcast process (related to q) 
and Red line = Number of individuals 
warned by the peer-to-peer process 
(related to p). (b) Detail of in the time slot 
0–100 min [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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studied the diffusion of information during a crisis in the Independent 
State of Samoa. He concluded that the political and social context 
plays a major role and that the majority of respondents in Samoa pre-
ferred vertically integrated communications systems when it came 
to making decisions during a crisis, that is Samoa citizens rely heavily 
on broadcast media and official channels for information in disaster 
response (Martin-Shields, 2019).

Building on previous studies (Rogers & Sorensen, 1991; Lindell 
& Perry, 1987; Lindell et al., 2007; Rogers & Sorensen, 1989), the 
purpose of this paper was to present the results of an analysis on 
the timing of diffusion of the warning messages. In this paper, the 
Bass model is introduced to study the spread of information during 
emergency situations. Survey data collected in two accidents involv-
ing hazardous materials are used to validate the Bass model and to 
assess the time evolution of emergency warning messages.

A number of interesting conclusions can be drawn. First off, the 
Bass model provided an excellent fit of the warning diffusion times 
related to the Pittsburgh phosphorus oxychloride release. With 
reference to Figure 2b, the application of the Bass model suggests 
that the first phase of the warning process is sustained by a broad-
cast information diffusion process (related to p coefficient. Namely, 
p = .0011). The broadcast component disseminates the emergency 
warning in a centralized way, that is many are alerted simultaneously. 
However, after about 35 min from the beginning of the warning 
process (see Figure 2b), the efficacy of the warning process itself 
is dominated by the “imitation” component, that is the effective-
ness of a robust social network between individuals (q = 0.038). In 
fact, Figure 2b pinpoints that after about 35 min from the occur-
rence of the accident, the number of warned individuals alerted by 
the peer-warning process exceeds the number of people warned by 
broadcast media. Interestingly, our findings are confirmed by the 
original work of Rogers and Sorensen (Rogers & Sorensen, 1989), 
stating that: “The most effective warning source in terms of average 
time to warn in Pittsburgh was the contagion of the warning message 
through the social network.”

A similar analysis was performed for the precautionary evacua-
tion occurred in Confluence. With reference to Figure 4b, the appli-
cation of the Bass model suggests that the first phase of the warning 
process is prompted by a broadcast information diffusion process 
(p = .0005). By analogy with the chemical release in Pittsburgh, in 
the Confluence accident, after about 45 min from the beginning of 
the warning process (see Figure 4b), the efficacy of the warning pro-
cess itself is dominated by the “imitation” component (q = 0.02858). 
Furthermore, our results are consistent with the original formula-
tion of the Bass model providing q coefficients at least an order of 
magnitude greater than p, proving that social communication has a 
greater effect on the diffusion of information than broadcast media 
(Bass, 1969).

As a general rule, our results indicate that accurate control of 
information may be essential within approximately 40–60 min from 
the beginning of the emergency event. After such temporal frame, 
the presence of a social network between individuals is likely to 
dominate the information diffusion process. Interestingly, our 

findings correlate favourably with previous results. A recent paper 
by Del Vicario and colleagues (Del Vicario et al., 2016) studied the 
spreading of information among social network users analysing the 
diffusion of conspiracy theories and scientific information. They 
showed that the online dissemination of information exhibits a prob-
ability peak in the first 2 hr and a second after about 20 hr. In the 
same paper, they found that a significant percentage of the informa-
tion diffuses rapidly (24.42% of the science news and 20.76% of the 
conspiracy rumours diffuse in less than 2 hr, and 39.45% of science 
news and 40.78% of conspiracy theories in less than 5 hr).

The Bass model presented in this paper can be successfully ap-
plied in disaster responses that allow for the presence of both warn-
ing diffusion components (i.e. broadcast and contagion). A striking 
feature of the Bass model is its possible application in some special 
emergency situations where p = 0 or q = 0. As shown by Equation (2), 
the broadcast process is described by an exponential growth while 
the contagion process yields a logistic curve. As a matter of fact, one 
would expect that the broadcast component is likely to play a major 
role in situations of emergency where ample forewarning can given 
to the population (i.e. hurricanes) (Lindell & Perry, 1992). Indeed, it 
is likely that people are already in high state of alert and are await-
ing for warning messages from media, governments of local author-
ities; therefore, vertical sources of information are more effective 
than horizontal ones. Recent research reports that in such circum-
stances, it is expected that the diffusion of warning messages can 
be approximated by the following function (Lindell & Perry, 1992): 
Nt=1−e(−at

b), where Nt is the fraction of people warned at time t, 
with a and b being two parameters derived from the fit. Consistently, 
if q = 0 is considered in the Bass model described by Equation (2) 
a similar function is obtained, that is Nt=1−e(−at) thus proving the 
possible extension of the model to special cases where the conta-
gion component (i.e. p) is missing. Further studies will need to be 
undertaken to explore the possibility of extending the Bass model to 
other emergency situations.

6  | CONCLUSIONS

Understanding the diffusion of warning messages is essen-
tial to adequately respond to emergency events and situations. 
According to the present work, the general Bass model applied to 
the time evolution of emergency warnings fits literature data very 
well and has the potential to provide key information that can be 
applied right away by professional communicators, advisors and 
decision-makers in case of a CBRNe event requiring urgent warn-
ing diffusion. In particular, accurate management of information 
spreading may be essential within approximately 40–60 min from 
the beginning of the emergency event. After such temporal frame, 
social networks (i.e. the “imitation” component of the Bass model) 
are likely to dominate the information diffusion process. This find-
ing concurs well with previous findings (Del Vicario et al., 2016; 
Lindell et al., 2007). Ultimately, the control of information and 
emergency warnings at the very beginning of a disaster or of an 
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emergency event is key to counter the generation of misinforma-
tion, rumour and fake information.
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